产品|公司|采购|招标

仪表网>全部分类> 泵阀 泵阀附件 >阀门定位器

返回产品中心

阀门定位器

阀门定位器

阀门定位器,按结构分气动阀门定位器、电气阀门定位器及智能阀门定位器,是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的输出信号去控制气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位系统。1结构阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器阀门定位器和智能式阀门定位器。阀门定位器能够增大调节阀的输出功率,减少调节信号的传递滞后的情况发生,加快阀杆的移动速度,能够提高阀门的线性

查看详情
阀门定位器

精品推荐

加工定制: 更多 确定 多选 +
价格

-

在线购买

勾选此项,您可以进行网上采购支付
共找到411条 阀门定位器 产品信息
12345共13页411条记录
返回安徽快3
湖北快3 甘肃快3 甘肃快3 内蒙古快3 吉林快3 上海快3 河南快3 江苏快3 pk10 上海快3
[{"ID":"51","Title":"阀门定位器","UserID":"0","UserName":"","Author":"马迎弟","CompanyID":"0","CompanyName":"","HitNumber":"2","Detail":"

阀门定位器,按结构分气动阀门定位器、电气阀门定位器及智能阀门定位器,是调节阀的主要附件,通常与气动调节阀配套使用,它接受调节器的输出信号,然后以它的<\/SPAN>输出<\/A>信号去<\/SPAN>控制<\/A>气动调节阀,当调节阀动作后,阀杆的位移又通过机械装置反馈到阀门定位器,阀位状况通过电信号传给上位<\/SPAN>系统<\/A>。<\/SPAN><\/P>$detailsplit$

1<\/STRONG>结构<\/H2>

阀门定位器按其结构形式和工作原理可以分成气动阀门定位器、电-气阀门定位器<\/P>

<\/A>阀门定位器<\/SPAN>和智能式阀门定位器。<\/P>

阀门定位器能够增大调节阀的输出功率,减少调节信号的传递滞后的情况发生,加快阀杆的移动速度,能够提高阀门的线性度,克服阀杆的摩擦力并消除不平衡力的影响,从而保证调节阀的正确定位。<\/P>

2<\/STRONG>定位器分类<\/H2>

阀门定位器按输入信号分为气动阀门定位器、电气阀门定位器和智能阀门定位器<\/A>。气动阀门定位器的输入信号是标准气信号,例如,20~100kPa气信号,其输出信号也是标准的气信号。电气阀门定位器的输入信号是标准电流或电压信号,例如,4~20mA电流信号或1~5V电压信号等,在电气阀门定位器内部将电信号转换为电磁力,然后输出气信号到拨动控制阀。智能电气阀门定位器它将控制室输出的电流信号转换成驱动调节阀的气信号,根据调节阀工作时阀杆摩擦力,抵消介质压力波动而产生的不平衡力,使阀门开度对应于控制室输出的电流信号。并且可以进行智能组态设置相应的参数,达到改善控制阀性能的目的。<\/P>

按动作的方向可分为单向阀门定位器和双向阀门定位器。单向阀门定位器用于活塞式执行机构时,阀门定位器只有一个方向起作用,双向阀门定位器作用在活塞式执行机构气缸的两侧,在两个方向起作用。<\/P>

按阀门定位器输出和输入信号的增益符号分为正作用阀门定位器和反作用阀门定位器。正作用阀门定位器的输入信号增加时,输出信号也增加,因此,增益为正。反作用阀门定位器的输入信号增加时,输出信号减小,因此,增益为负。<\/P>

按阀门定位器输入信号是模拟信号或数字信号,可分为普通阀门定位器和现场总线电气阀门定位器。普通阀门定位器的输入信号是模拟气压或电流、电压信号,现场总线电气阀门定位器的输入信号是现场总线的数字信号。<\/P>

按阀门定位器是否带CPU可分为普通电气阀门定位器和智能电气阀门定位器。普通电气阀门定位器没有CPU,因此,不具有智能,不能处理有关的智能运算。智能电气阀门定位器带CPU,可处理有关智能运算,例如,可进行前向通道<\/A>的非线性补偿等,现场总线电气阀门定位器还可带PID等功能模块,实现相应的运算。<\/P>

按反馈信号的检测方法也可进行分类。<\/P>

例如,用机械连杆方式检测阀位信号的阀门定位器:用霍尔效应检测位移的方法检测阀杆位移的阀门定位器:用电磁感应方法检测阀杆位移的阀门定位器等。<\/P>

3<\/STRONG>工作原理<\/H2>

阀门定位器是控制阀<\/A>的主要附件.它将阀杆位移信号作为输入的反馈测量信号,以控制器输出信号作为设定信号,进行比较,当两者有偏差时,改变其到执行机构的输出信号,使执行机构动作,建立了阀杆位移量与控制器输出信号之间的一一对应关系。因此,阀门定位器组成以阀杆位移为测量信号,以控制器输出为设定信号的反馈控制系统<\/A>。该控制系统的操纵变量是阀门定位器去执行机构的输出信号。<\/P>

4<\/STRONG>定位器作用原理<\/H2>

(1)用于对调节质量要求高的重要调节系统,以提高调节阀的定位及可靠性。<\/P>

(2)用于阀门两端压差大( △p>1MPa)的场合。通过提高气源压力增大执行机构的输出力,以克服液体对阀芯产生的不平衡力,减小行程误差。<\/P>

(3)当被调介质为高温、高压、低温、有毒、易燃、易爆时,为了防止对外泄漏,往往将填料压得很紧,因此阀杆与填料间的摩擦力较大,此时用定位器可克服时滞。<\/P>

(4)被调介质为粘性流体或含有固体悬浮物时,用定位器可以克服介质对阀杆移动的阻力。<\/P>

(5)用于大口径(Dg>100mm)的调节阀,以增大执行机构的输出推力。<\/P>

(6)当调节器与执行器距离在60m以上时,用定位器可克服控制信号的传递滞后,改善阀门的动作反应速度。<\/P>

(7)用来改善调节阀的流量特性。<\/P>

(8)一个调节器控制两个执行器实行分程控制时,可用两个定位器,分别接受低输入信号和高输入信号,则一个执行器低程动作,另一个高程动作,即构成了分程调节。<\/P>$detailsplit$

参考资料编辑区域<\/P>$detailsplit$

1<\/SPAN>结构<\/A><\/P>

2<\/SPAN>定位器分类<\/A><\/P>

3<\/SPAN>工作原理<\/A><\/P>

4<\/SPAN>定位器作用原理<\/A><\/P><\/DIV>$detailsplit$

1<\/SPAN>结构<\/A><\/I><\/P>

2<\/SPAN>定位器分类<\/A><\/I><\/P>

3<\/SPAN>工作原理<\/A><\/I><\/P>

4<\/SPAN>定位器作用原理<\/A><\/I><\/P>","ClassID":"6932","Sort":"0","IsShow":"1","CreateTime":"2015/4/14 13:53:47","UpdateTime":"2015/4/14 13:53:47","RecommendNum":"1","Picture":"2/20150414/635646163572980753984.jpg","PictureDomain":"img65","ParentID":"45","Other":[{"ID":"50","Title":"气动执行器","UserID":"0","UserName":"","Author":"马迎弟","CompanyID":"0","CompanyName":"","HitNumber":"5","Detail":"

气动执行器是用气压<\/A>力驱动启闭或调节阀门的执行装置,又被称气动执行机构或气动装置,不过一般通俗的称之为气动头<\/A>。本文对气动头的各种技术要求,进行阐述。<\/P>

气动执行器的执行机构<\/A>和调节机构<\/A>是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。拨叉式气动执行器<\/A>具有扭矩大、空间小、扭矩曲线<\/A>更符合阀门的扭矩曲线等特点,但是不很美观;常用在大扭矩的阀门上。齿轮齿条式气动执行机构有结构简单,动作平稳可靠,并且安全防爆等优点,在发电厂、化工,炼油等对安全要求较高的生产过程中有广泛的应用。<\/P>$detailsplit$

1<\/STRONG>基本构成<\/H2>

<\/A>内部结构<\/SPAN><\/P>

气动执行器的调节机构的种类和构造大致相同,主要是执行机构不同。因此在气动执行器介绍时分为执行机构和调节阀两部分。气动执行器由执行机构和调节阀(调节机构)两个部分组成。根据控制信号的大小,产生相应的推力,推动调节阀动作。调节阀是气动执行器的调节部分,在执行机构推力的作用下,调节阀产生一定的位移或转角,直接调节流体的流量。<\/P>

1、气动装置主要由气缸、活塞、齿轮轴<\/A>、端盖、密封件、螺丝等组成;成套气动装置还应该包括开度指示、行程限位、电磁阀<\/A>、定位器、气动元件、手动机构、信号反馈等部件组成。<\/P>

2、气动装置与阀门的连接尺寸应符合ISO5211(底部)、 GB/T12222 和 GB/T12223 的规定。<\/P>

3、带手动机构的气动装置,在气源中断时,应能用其手动机构进行气动球阀的启闭操作,面向手轮时,手轮或手柄应逆时针旋转为阀开,顺时针旋转为阀关。<\/P>

4、活塞杆端部为内、外螺纹时,应有标准扳手适用的扳手口。<\/P>

5、活塞的密封圈应便于更换与检修。<\/P>

6、带缓冲机构的气动装置,其缓冲机构的行程长度可参照《表 1》的规定。<\/P>

<\/A> <\/P>

7、带可调缓冲机构的气动装置,应有缸体外部调节其缓冲作用的机构。<\/P>

8、气缸进出气口的螺纹尺寸应符合MANUR NORM(附件标准) sypv,GB/T7306.1、GB/T7306.2 和 GB/T7307 的规定。<\/P>

2<\/STRONG>性能<\/H2>

1、气动装置额定输出力或力矩应符合 GB/T12222 和 GB/T12223 的规定<\/P>

<\/A>上面为薄膜式执行机构<\/SPAN><\/P>

2、在空载情况下,对气缸内输入按《表 2》规定的气压,其动作应平稳,无卡阻及爬行现象。<\/P>

3、在 0.6MPa 的空气压力下,气动装置启、闭两个方向的输出力矩或推力,其值应不小于气动装置标牌所标示的数值,且动作应灵活,不允许各部位出现变形及其他异常现象。<\/P>

4、密封试验用大工作压力进行试验时,从各自背压一侧泄漏出的空气量不允许超过 (3+0.15D)cm3/min(标准状态);从端盖、输出轴处泄漏出的空气量不允许超过 (3+0.15d)cm3/min。<\/P>

5、强度试验用 1.5 倍的大工作压力进行试验,保持试验压力 3min 后,其缸体端盖和静密封部位不允许有渗漏及结构变形。<\/P>

6、动作寿命次数,气动装置模拟气动阀门动作,在保持两个方向的输出力矩或推力能力的情况下,启闭操作的启闭次数应不低于 50000 次(启—闭循环为一次)。<\/P>

7、带缓冲机构的气动装置,当活塞运动到行程终端位置时,不允许出现冲击现象。<\/P>

3<\/STRONG>外观<\/H2>

1、铸造气缸的端盖、端法兰、箱体上不得有划痕、割痕、气孔、毛刺等。<\/P>

2、气动装置外表面涂漆层或化学处理层应平整、光滑、色泽均匀,无油污、压痕和其他机械损伤。<\/P>

4<\/STRONG>优势<\/H2>

1、接受连续的气信号,输出直线位移(加电/气转换装置后,也可以接受连续的电信号),有的配上摇臂后,可输出角位移。<\/P>

气动执行器<\/P>

2、有正、反作用功能。<\/P>

3、移动速度大,但负载增加时速度会变慢。<\/P>

4、输出力与操作压力有关。<\/P>

5、可靠性高,但气源中断后阀门不能保持(加保位阀后可以保持)。<\/P>

6、不便实现分段控制和程序控制。<\/P>

7、检修维护简单,对环境的适应性好。<\/P>

8、输出功率较大。<\/P>

9、具有防爆功能。<\/P>

紧凑的双活塞齿轮,齿条式结构,啮合,效率高,输出扭矩恒定。<\/P>

铝制缸体、活塞及端盖,与同规格结构的执行器相比重量轻。<\/P>

缸体为挤压铝合金,并经硬质阳极氧化处理,内表面质地坚硬,强度,硬度高。采用低摩擦材料制成的滑动轴承,避免了金属间的相互直接接触,摩擦系数低,转动灵活,使用寿命长。<\/P>

气动执行器与阀门<\/A>安装、连接尺寸根据国际标准ISO5211、DIN3337和VDI/VDE3845进行设计,可与普通气动执行器互换。<\/P>

气源孔符合 NAMUR 标准。<\/P>

气动执行器底部轴装配孔(符合ISO5211标准)成双四方形,便于带方杆的阀线性或45°转角安装。<\/P>

输出轴的顶部和顶部的孔符合 NAMUR 标准。<\/P>

两端的调整螺钉可调整阀门的开启角度。<\/P>

相同规格的有双作用式、单作用式(弹簧复位)。<\/P>

可根据阀门需要选择方向,顺时针或逆时针旋转。<\/P>

根据用户需要安装电磁阀<\/A>、定位器<\/A>(开度指示)、回信器、各种限位开关及手动操作装置。<\/P>

5<\/STRONG>缺点<\/H2>

控制精度较低,双作用的气动执行器,断气源后不能回到预设位置。单作用的气动执行器,断气源后可以依靠弹簧回到预设位置<\/P>

6<\/STRONG>分类选型<\/H2>

执行器按其能源形式分为气动,电动和液动三大类,它们各有特点,适用于不同的场合。气动执行器是执行器中的一种类别。气动执行器还可以分为单作用和双作用两种类型:执行器的开关动作都通过气源来驱动执行,叫做DOUBLE ACTING (双作用)。SPRING RETURN (单<\/P>

<\/A> <\/P>

作用)的开关动作只有开动作是气源驱动,而关动作时弹簧复位。<\/P>

注:本文均以DA/SR系列气动执行机构为例,说明执行机构的选用这个参考资料的目的是帮助客户正确选择执行机构,在把气动/电动执行机构安装到阀门之前,必须考虑以下因素。* 阀门的运行力矩加上生产厂家的推荐的安全系数/根据操作状况。* 执行机构的气源压力或电源电压。* 执行机构的类型双作用或者单作用(弹簧复位)以及一定气源下的输出力矩或额定电压下的输出力矩。* 执行机构的转向以及故障模式(故障开或故障关)正确选择一个执行机构是非常重要的,如执行机构过大,阀杆可能受力过大。相反如执行机构过小,侧不能产生足够的力矩来充分操作阀门。一般地说,我们认为操作阀门所需的力矩来自阀门的金属部件(如球芯,阀瓣)和密封件(阀座)之间的磨擦。根据阀门使用场合,使用温度,操作频率,管道和压差,流动介质(润滑、干燥、泥浆),许多因素均影响操作力矩<\/P>

球阀的结构原理基本上根据一个抛光球芯(包括通道)包夹在两个阀座这间(上游和下游),球心的旋转对流体进行拦截或流过球芯,上游和下游的压差产生的力使球芯紧靠在下游阀座(浮动球结构)。这种情况下操作阀门的力矩是由球芯与阀座、阀杆与填料相互摩擦所决定的。如图1所示,力矩大值发生在出现压差且球芯在关闭位置向打开方向旋转时<\/P>

蝶阀。蝶阀的结构原理基本上根据固定在轴心的蝶板。在关闭位置蝶板与阀座完全密封,当蝶板旋转(绕着阀杆)后与流体的流向平行时,阀门处于全开位置。相反当蝶板与流体的流向垂直时,阀门处于关闭位置。操作蝶阀的力矩是由蝶板与阀座、阀杆与填料之间的磨擦所决定的,同时压差作用在蝶板上的力也影响操作力矩如阀门在关闭时力矩大,微小地旋转后,力矩将明显减小<\/P>

旋塞阀的结构原理是基本根据密封在锥形塞体里的塞子。在塞子的一个方向上有一个通道。随着塞子旋入阀座来实现阀门的开启和关闭。操作力矩通常不受流体的压力影响而是由开启和关闭过程中阀座和塞子之间的摩擦所决定的。阀门在关闭时力矩大。由于有受压力的影响,在余下的操作中始终保持较高的力矩<\/P>

7<\/STRONG>其它相关<\/H2>

双作用执行机构<\/H3>

双作用执行机构的选用以DA系列气动执行机构为例。齿轮条式执行机构的输出力矩是活塞压力(气源压力所供)乘上节圆半径(力臂)所得,如图4所示。且磨擦阻力小效率高。如图5所示,顺时针旋转和逆时针旋转时输出力矩都是线性的。在正常操作条件下,双作用执行机构的推荐安全系数为25-50%<\/P>

单作用执行机构<\/H3>

明精单作用执行机构的选用以SR系列气动执行机构为例在弹簧<\/A>复位的应用中,输出力矩是在两个不同的操作过程中所得,根据行程位置,每一次操作产生两个不同的力矩值。弹簧复位执行机构的输出力矩由力(空气压力或弹簧作用力)乘上力臂所得种状况:输出力矩是由空气压力进入中腔压缩弹簧后所得,称为\"空气行程输出力矩\"在这种情况下,气源压力迫使活塞从0度转向90度位置,由于弹簧压缩产生反作用力,力矩从起点时大值逐渐递减直至到第二种状况:输出力矩是当中腔失气时弹簧恢复力作用在活塞上所得,称为\"弹簧行程输出力矩\"在这种情况下,由于弹簧的伸长,输出力矩从90度逐渐递减直0度如以上所述,单作用执行机构是根据在两种状况下产生一个平衡力矩的基础上设计而成的。如图11所示。在每种情况下,通过改变每边弹簧数量和气源压力的关系(如每边2根弹簧和5.5巴气源或反之),有可能获得不平衡力矩 在弹簧复位应用中可获得两种状况:失气开启或失气关闭。在正常工作条件下,弹簧复位执行机构的推荐安全系数为25-50%<\/P>

弹簧复位执行机构的选用示例(同时见技术数据表):<\/P>

弹簧关(失气)<\/P>

*球阀的力矩=80NM<\/P>

*安全系数(25%)=80NM+25%=100NM<\/P>

*气源压力=0.6MPa<\/P>

被选用的SY-SR执行机构是SR125-05,因为可产生下列数值:<\/P>

*弹簧行程0o=119.2NM<\/P>

*弹簧行程90o=216.2NM<\/P>

*空气行程0o=228.7NM<\/P>

*空气行程90o=118.8NM<\/P>

8<\/STRONG>与电动执行器的比较<\/H2>

从技术性能方面讲,气动执行器的优势主要包括以下4个方面:<\/P>

(1)负载大,可以适应高力矩输出的应用。<\/P>

(2)动作迅速、反应快。<\/P>

(3)工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射和振动等恶劣工作环境中,比液压、电子、电气控制更优越。<\/P>

(4)行程受阻或阀杆被扎住时电机容易受损。<\/P>

而电动执行器的优势主要包括:<\/P>

(1)结构紧凑,体积小巧。比起气动执行器,电动执行器结构相对简单,一个基本的电子系统包括执行器,三位置DPDT开关、熔断器和一些电线,易于装配。<\/P>

(2)电动执行器的驱动源很灵活,一般车载电源即可满足需要,而气动执行器需要气源和压缩驱动装置。<\/P>

(3)电动执行器没有“漏气”的危险,可靠性高,而空气的可压缩性使得气动执行器的稳定性稍差。<\/P>

(4)不需要对各种气动管线进行安装和维护。<\/P>

(5)可以无需动力即保持负载,而气动执行器需要持续不断的压力供给。<\/P>

(6)由于不需要额外的压力装置,电动执行器更加安静。通常,如果气动执行器在大负载的情况下,要加装消音器。<\/P>

(7)在气动装置中的通常需要把电信号转化为气信号,然后再转化为电信号,传递速度较慢,不宜用于元件级数过多的复杂回路。<\/P>

(8)电动执行器在控制的精度方面更胜一筹。<\/P>

实际上,气动系统和电动系统并不互相排斥。气动执行器可以简单的实现快速直线循环运动,结构简单,维护便捷,同时可以在各种恶劣工作环境中使用,如有防爆要求、多粉尘或潮湿的工况。但在作用力快速增大且需要定位的情况下,带伺服马达的电驱动器具有优势。对于要求、同步运转、可调节和规定的定位编程的应用场合,电驱动器是好的选择,带闭环定位控制器的伺服或步进马达所组成的电驱动系统能够补充气动系统的不足之处。<\/P>

现代控制中各种系统越来越复杂、越来越精细,并不是某种驱动控制技术就可满足系统的多种控制功能。电动执行器主要用于需要精密控制的应用场合,自动化设备中柔性化要求在不断提升,同一设备往往要求适应不同尺寸工件的加工需要,执行器需要进行多点定位控制,而且要对执行器的运行速度及力矩进行控制或同步跟踪,这些利用传统气动控制是无法实现的,而电动执行器就能非常轻松的实现此类控制。由此可见气动执行器比较适用于简单的运动控制,而电执行器则多用于精密运动控制的场合。<\/P>$detailsplit$

参考资料编辑区域<\/P>$detailsplit$

1<\/SPAN>基本构成<\/A><\/P>

2<\/SPAN>性能<\/A><\/P>

3<\/SPAN>外观<\/A><\/P>

4<\/SPAN>优势<\/A><\/P>

5<\/SPAN>缺点<\/A><\/P>

6<\/SPAN>分类选型<\/A><\/P><\/DIV>

7<\/SPAN>其它相关<\/A><\/P>

<\/I>双作用执行机构<\/A><\/P>

<\/I>单作用执行机构<\/A><\/P>

8<\/SPAN>与电动执行器的比较<\/A><\/P><\/DIV>$detailsplit$

1<\/SPAN>基本构成<\/A><\/I><\/P>

2<\/SPAN>性能<\/A><\/I><\/P>

3<\/SPAN>外观<\/A><\/I><\/P>

4<\/SPAN>优势<\/A><\/I><\/P>

5<\/SPAN>缺点<\/A><\/I><\/P>

6<\/SPAN>分类选型<\/A><\/I><\/P>

7<\/SPAN>其它相关<\/A><\/I><\/P>

7.1<\/SPAN>双作用执行机构<\/A><\/I><\/P>

7.2<\/SPAN>单作用执行机构<\/A><\/I><\/P>

8<\/SPAN>与电动执行器的比较<\/A><\/I><\/P>","ClassID":"6932","Sort":"0","IsShow":"1","CreateTime":"2015/4/14 13:48:30","UpdateTime":"2015/4/14 13:48:30","RecommendNum":"1","Picture":"2/20150414/635646160949098391198.jpg","PictureDomain":"img67","ParentID":"44"},{"ID":"305","Title":"分水滤气器","UserID":"0","UserName":"","Author":"马迎弟","CompanyID":"0","CompanyName":"","HitNumber":"2","Detail":"

分水滤气器,顾名思义,即将压缩气体中的水汽、油滴及其他一些杂质从气体中分离出来,达到净化的作用的元件。因此,分水滤气器一般又称为空气过滤器或气水分离器<\/span>
<\/p>$detailsplit$

1<\/strong>用途编辑<\/h2>

分水滤气器一般用于对压缩空气<\/a>的清洁,从而保障气动执行元件<\/a>的正常工作 ;经常和减压阀<\/a>、油雾器<\/a>一起使用,集这三者为一体的元件称为气源三联体<\/a>,气源三联体对压缩气体进行干燥、压力调节和加油,很好的保护了气动执行元件。<\/p>

\"锚点\"\"锚点\"\"锚点\"<\/p>

2<\/strong>原理编辑<\/h2>

\"\"<\/a><\/p>

如右图所示:从进口进入的压缩空气,通过导流板(2)后沿导流叶片切线<\/a>方向高速旋转,混杂在空气中的水汽、油滴及其他一些杂质在强大的离心作用下分离出来,甩到水杯(7)的内壁上,流到水杯的底部,除去液态水油和较大杂质的压缩空气,再通过滤芯(3)的进一步过滤,清除微小的固态颗粒,然后从出口输出清洁的压缩空气。伞形挡水板(5)将水杯分隔成上下两部分,下部保持压力静区,可以防止高速旋转的气流吸起杯底的水油。聚集在杯底的水油从排水阀(8)放掉。不过,分水滤气器不能除去气态的水和油。<\/p>

\"锚点\"\"锚点\"\"锚点\"使用和维护<\/span><\/p>

3<\/strong>编辑<\/h2>

分水滤气器的出入口要求连接正确,否则不能形成高速旋转气流,将杂质分离出来;分水滤气器必须竖直水杯向下安装;分水滤气器要根据实际情况经常放水,否则水位高过伞形挡板时失去分离效果。<\/p>$detailsplit$

参考资料编辑区域<\/p>$detailsplit$

1<\/span>用途编辑<\/a><\/p>

2<\/span>原理编辑<\/a><\/p>

3<\/span>编辑<\/a><\/p><\/div>$detailsplit$

1<\/span>用途编辑<\/a><\/i><\/p>

2<\/span>原理编辑<\/a><\/i><\/p>

3<\/span>编辑<\/a><\/i><\/p>","ClassID":"6932","Sort":"0","IsShow":"1","CreateTime":"2015/5/4 14:18:44","UpdateTime":"2015/5/4 14:18:44","RecommendNum":"1","Picture":"2/20150504/635663459213991127784.jpg","PictureDomain":"img67","ParentID":"299"},{"ID":"306","Title":"电气转换器","UserID":"0","UserName":"","Author":"马迎弟","CompanyID":"0","CompanyName":"","HitNumber":"2","Detail":"

电气转换器是将0~10mA或4~20mA的直流信号转换成20~100kPa气动信号,以便沟通电动单元仪表与气动单元仪表一起工作。<\/span><\/p>$detailsplit$

1<\/strong>特点编辑<\/h2>

1、 电气转换器是直动式(无反馈)仪表,可以得到高功率的气动输出信号。<\/p>

2、 外形美观,结构巧妙,体积小,重量轻。 灵敏度高,稳定性好,中等精度(特别适用于输出回路)。<\/p>

3、 现场可直接改变作用方式。 外部带有跨度、零位调节装置,调校维护方便。<\/p>

4、 转换器的内部线路中附有热敏电阻,可以自动进行温度补偿。<\/p>

5、 供气范围宽、适应各种不同场合使用。耗气量小。<\/p>

6、 电气转换器能直接用于不同输入电信号,如4-20mADC或0-10mADC。其输出气压亦能分程如20-60kPa或60-100kPa。要达到上述目的的仅需调节“零位”及“跨度”调节装置,即可。<\/p>

7、能任意角度安装(注:工作安装角度位置应与调校角度位置相合)。<\/p>

8、防爆<\/a>性能:本安型防爆等级iaⅡCT5 隔爆型防爆等级dⅡBT6。7、零部件采用精密压铸成型,外形及内部结构制作工艺精致,整体结构紧凑。 8、采用不锈钢紧固件和先进的喷塑工艺,具备了良好的防腐性能。<\/p>

\"锚点\"\"锚点\"\"锚点\"<\/p>

2<\/strong>技术参数编辑<\/h2>

输入讯号: DQ-2型为0~10mA或-5~+5mA<\/p>

DQ-3型为4~20mA<\/p>

转换器内阻:DQ-2型:1000Ω<\/p>

DQ-3型:250Ω<\/p>

输出讯号:20~100kPa<\/p>

气源压力:140 kPa<\/p>

精度:±1%<\/p>

环境温度:5~50℃<\/p>

环境相对湿度:≤85%<\/p>

环境温度误差:0.4%/10℃<\/p>

耗气量:300升/小时<\/p>

传送时间:管道内径φ4毫米,长60米时不超过5s<\/p>

重量:2kg<\/p>

\"锚点\"\"锚点\"\"锚点\"<\/p>

3<\/strong>电气转换器性能编辑<\/h2>

电气转换器使用开环路控制和小质量磁铁,以比较经济的成本,进行的气压控制。不受位置影响以及抗RFI/EMI干扰。<\/p>

电流或电压输入信号转换为线性比例气动输出压力。这种通用仪表设计为以比较经济的成本,提供高可靠性和可重复性的应用。小量程模型是专为3到5psig输出的标准过程控制设计。扩展量程型号可为更高压力的工业气动和过程控制系统的运行要求提供145psig输出。[1]<\/span> <\/a><\/p>$detailsplit$

参考资料编辑区域<\/p>$detailsplit$